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Abstract: Response Surface Methodology (RSM) is a collection of  mathematical and statistical 
techniques useful for developing, improving, and optimizing processes. Applications of  RSM can be 
found in e.g. chemical, engineering and clinical sciences. Still, there does not seem to be an established 
code of  practice for the automated application of  RSM in the field of  simulation optimization. In this 
paper our aim is to find the best settings for an automated RSM procedure when there is very little 
information about the objective function. We present a framework of  the RSM procedures for finding 
optimal solutions and emphasize the use of  both stopping rules and restart procedures. Various versions 
of  the RSM algorithms are compared on a number of  test functions, including a simulation model for 
cancer screening. The results show that considerable improvement is possible over the proposed settings in 
the existing literature. Accordingly, we give general recommendations on the application of  automated 
RSM algorithms in simulation optimization. 

Keywords: Code of  practice, estimation, Response Surface Methodology, simulation via optimization. 
______________________________________________________________________

1. Introduction

esponse Surface Methodology (RSM) is a tool that was introduced in the early 50´s by 
Box and Wilson [5]. RSM is a collection of mathematical and statistical techniques 

that is useful for the approximation and optimization of  stochastic models. The objective 
function associated with such models is subject to random noise and is referred to as noisy
or stochastic objective function. RSM is based on approximations of  the objective function 
by a low order polynomial on a small sub-region of  the domain. Using regression analysis 
based on a number of  ‘noisy’ measurements of  the objective function, the best local 
solution is determined together with a search direction for possible improvement. To this 
end, the objective is evaluated in a specific arrangement of  points referred to as an 
experimental design. Many applications of  the RSM procedure are performed in a manual 
setting, for example in physical, engineering, biological, medical and food sciences [17]. 

R

In a manual setting the user can interfere in the optimization process according to 
his/her personal intuition and likings. In an automated RSM optimization algorithm the 
settings of  the algorithm have to be fixed in a systematic manner. Ideally, such an algorithm 
does not stop to ask for input from the user during an optimization run; instead it reads the 
input, performs a systematic search for an optimum and reports the optimum back to the 
user. The OPTQUEST [9] simulation optimization procedure operates in a similar way, yet 
it is primarily oriented at optimization of  discrete decision variables and it uses other 
techniques. 
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Our interest is in finding the best settings for an automated RSM algorithm when there 
is very little information about the objective function. Here best means that the algorithm 
finds near-optimal solutions under all circumstances and has a demonstrated performance. 
Under consideration are noisy objective functions with unknown variance that are somewhat 
time-consuming to evaluate for each solution. This situation especially occurs when one
optimizes a simulation model, that is, when one tries to find the model parameters that
optimize specific stochastic output statistics of the simulation model. For this type of  
simulation models other simulation optimization methods are less practical, because they 
require many simulation runs (see Kleijnen [15]). RSM is a typical example of a meta 
heuristic. It considers the simulation model as a black box and only observes its input and 
output. The advantage of  such a procedure is that the original simulation model can be left 
intact, while procedures like infinitesimal perturbation require software changes that are 
not desirable in case of  very complex models. Since simulation models become more and 
more complex and have many input parameters, there is certainly need for fast automated 
RSM algorithms in simulation optimization (see Safizadeh and Thornton [23]). 

For an automated RSM to be called successful it should be reliable, precise and fast. 
The procedure should recognize when no further progress is being made and the differences 
in the subsequent iterations can only be attributed to the noise in the objective function. 
Moreover, the procedure should also be able to distinguish optimal solutions from random 
fluctuations. 

In this paper we present a framework of  RSM procedures for finding optimal solutions 
in the presence of  noise. It includes feedback iterations, precision checks (stopping rules) 
and a restart procedure. It iterates between first-order and second-order approximation 
models in order to continue the search for optima beyond the first-order approximation. 
Furthermore we study which settings and choices result in the best automated RSM 
procedure, both with regard to computing time and precision. In the literature on RSM, 
which is discussed extensively in Section 2, we found rather confusing and non-systematic 
recommendations for the settings of  such a procedure. That is, there is no established code 
of practice for (automated) RSM algorithms. Such a code is especially important in medical 
applications (see Tan et al. [27]). In order to standardize the algorithm we fix some of  the 
possible choices in the process based on the existing literature. Other choices are defined in 
a number of test algorithms that are compared using randomized deterministic test functions 
and a simulation model well-known in the medical literature. 

The set-up of  this paper is as follows. In Section 2 we present our framework and we 
extensively discuss the choices to be made in the RSM procedure. We fix a number of  the 
settings based on pre-tests and previous literature. Other choices are subject to experiments 
and the design of  the experiments is discussed in Section 3. The test functions and the 
simulation model are described in Section 4 and the results of  our experiments are given in 
Section 5. Finally, in Section 6 we discuss the test results and give our recommendations. 

2. Response Surface Methodology 

Let us first give a description of  the steps in RSM; emphasis is on the choices that need 
to be defined for an automated RSM algorithm. Without loss of  generality, we discuss RSM
for a minimization problem. Secondly, we assume that the objective function is subject to 
stochastic noise, and that we want to optimize the expected value of  the stochastic output. 
Mathematically, the problem can be defined as 

                    (1) min ( ) : ,  .kf D D
�

� �� ��
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� � �� 1( ,..., )k� ��( ) ( ( ))f E FHere  is an unknown function of  the decision variables ,

with ( )F � �being the stochastic output for given input and E denoting expectation. In 
RSM ( )F � is referred to as response and the relation between the response and the true
response function  is given by �( ) ( )F f� � �� � , wheref is a normal distributed error 
term having mean zero and unknown variance 2	 . The latter especially applies to stochastic 
simulation models, where the objective function can be seen as a black box that returns a 
randomized output value for a given input. A simulation optimization exercise aims to find 
the input parameters that result into the minimum output value, such as finding the order-up 
to level that minimizes total costs in an inventory model. That is, the stochastic output 

( )F � �is utilized in order to find the optimal value of  the vector  (see e.g. Spall [26]). 

We need to make some comments about above model and its assumptions. Firstly, 
note that the decision variables in problem (1) are continuous. Secondly, we consider an 
unconstrained optimization problem. Although we focus on this kind of  problems, RSM 
can also be applied to constrained optimization problems. The interested reader is referred 
to Smith [24], Myers and Montgomery [18] and Angün [1]. Thirdly, since the simulation 
model is treated as a black box, variance reduction is only possible by applying more
simulation runs. 

The goals of RSM are approximating and mapping the response function over a
particular region of the domain and determining the values of  the decision variables, possibly 
under restrictions. The RSM procedure comprises two phases. In the first phase the objective 
function is locally approximated by a first-order polynomial and in the second phase by a 
second-order polynomial. For this purpose in both phases a region of  interest (ROI) is 
defined, which is a sub-region of  the domain. In order to approximate the objective function 
it is evaluated / measured in the points of  an experimental design. These points are usually 
located on the borders of  the region of  interest. When the first-order model is adequate a 
steepest descent procedure is applied to find a new region of  interest. Otherwise the RSM 
algorithm moves to the second phase. When a second-order model approximates the
objective adequately, a stationary point is determined and classified, and then an appropriate 
action has to be taken. Usually the algorithm is terminated and the stationary point is 
returned. However, we will discuss why it is profitable to continue the algorithm beyond 
the second phase especially for a stochastic function with unknown error variance. 

In particular we will define an extension where the algorithm returns to a first-order 
approximation in some cases. Stopping rules are based on the quality of  the current 
solution rather than on a certain phase in the optimization process. Furthermore, a restart 
procedure is applied after the algorithm is ended for the first time. Figure 1 shows the 
optimization process on a global scale and it displays when a stopping rule is checked. The 
dotted arrows show the proposed extensions. The stopping rules applied are the same after 
first and second phase. In this perspective we define an iteration of  the RSM algorithm as 
the run between two checks of  the stopping criteria of  the algorithm. 

There are a number of  settings that need to be implemented in an automated RSM 
procedure using a consistent decision rule. These settings can be divided into what we call 
building blocks, strategic choices, stopping rules and a restart mechanism. In order to arrive 
at an automated RSM procedure we therefore follow to a large part the steps of  the 
framework proposed by Neddermeijer et al. [19]. We define each step in this framework 
either as a building block or as a strategic choice. The building blocks of  the algorithm 
consist of  well-defined procedures that can be used to determine the next move of  the 
algorithm. Strategic choices of  the algorithm determine the action taken when a building 
block returns a result. In the remainder of  this section we formulate the new automated 
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RSM algorithm. In Sections 2.2 and 2.3 we present the building blocks and the strategic 
choices. Stopping rules and a restart mechanism are defined in Sections 2.4 and 2.5. In 
Section 2.6 a number of  parameter settings in the algorithm is discussed. Ultimately the 
description in the next sections leads to the framework shown in Figure 2. The steps in the 
RSM algorithm shown in Figures 1 and 2 are now first illustrated by means of  an example. 
The thick arrows give the corresponding route through the framework. 

Figure 1. Schematic overview of  the algorithm. Dotted arrows denote extensions. 
Thick arrows denote the route discussed in Section 2.1. Note: min. = minimum. 

2.1. Illustrative Example 

� �Let us consider the unconstrained minimization problem 
� �1 2,

, where 1 2min ( ( , ))E F
� � � � �� �1 2 1 2( , ) ( , )F f � ( ) 0E � �, ~ (0,1)N  and . The true objective function is given by  

and takes its minimum in (
with corresponding value . In our problem setting the true objective function is unknown 
and we have to utilize the stochastic output

� � � �� 
 
 
 � 
2 2
1 2 1 2( , ) 10exp{ [(100 ) (100 ) ]/15000}f 100,100)


10
� �1 2( , )F to find the optimal values of the

decision variables 1� 2�and . Let  be the centre of  the first region of  interest (ROI) 
and let the half  width of  this square region be equal to 40. The vertices of  the ROI are thus 
given by , ,

(10,10)


 
( 30, 30) 
( 30, 50) 
(50, 30) and . The vertices and the centre point 
together form the points of  a full factorial design. In the first phase of  RSM the objective 
function is approximated by a linear model:

(50, 50)

� � � � � � �� � �1 2 0 1 1 2 2( , )f . The decision 
variables or factors i�  are coded by ( 10)/4i ix 0�� 
 , . The coded centre point is 

 and the coded vertices are
=1, 2i


 
( 1, 1) 
(1, 1) 
( 1,1), ,(0, 0) and . The corresponding 
first-order approximation reads

(1,1)
  � � �1 2 0 1 1 2( , )f x x x x2 . In order to estimate the 

coefficients i , , the objective function is evaluated according to a design once in 
each of  the four vertices and five times in the centre point. Suppose 

is the vector of  observed responses, where 

�1, 2i
� 
 
( 2.16, 1.82,Ty


 
 
 
 
 
 
1.72, 6.91, 3.61, 2.96, 2.13, 4.38, 3.68)
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the last five values represent the five ‘replicate runs’ in the centre point, then the estimates 
of  the coefficients of  the coded variables are 0 1 2 . The 
replicate runs enable us to test for lack-of-fit. The test statistic equals 5.38 and since this 
does not exceed the critical value at 5% significance (6.94), we cannot reject the hypothesis 
that the linear model describes the response adequately. On the other hand the test for 
significance of  regression indicates that we cannot reject the hypothesis that all coefficients 
equal zero (test statistic equals 3.14). In Section 2.3.2 we argue why it is wise to move to 
phase 2 now. 

ˆ ˆ ˆ( , , ) ( 3.26, 1.21, 1.16)   � 
 
 


Figure 2. Framework for automated RSM algorithms with building blocks, 
strategic choices, stopping rules, and a restart mechanism. The building blocks 
are given by rectangles, the strategic choices are given by ellipses. The decision to 
continue or to restart the algorithm is also a strategic choice. Dotted lines denote 
extensions. Thick arrows denote the route discussed in Section 2.1. 
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In the second phase of  the RSM algorithm the factorial design is augmented with four 
axial points: 
( 2, 0) , 
(0, 2) 
( 2 0), (0, 2), and . Let 
 
 
( 1.80, 5.44, 1.06, 5.82)
be the response values in these points. Note that by adding the axial points the ROI 
becomes spherical; it is actually a circle with radius 2R �

    � � � � � 2
1 2 0 1 1 2 2 12 1 2 11 1( , )f x x x x x x x

� 2
2 2x ˆ ˆ ˆ ˆ ˆ ˆ( , , , , , ) ( 3.35, 1.25, 1.42, 1.38,      � 
 
 
 

0.0394, 0.0518)


. The estimates of the
coefficients of the second-order approximation

now appear to be equal to 0 1 2 12 11 22
. The test statistic of  the lack-of-fit test equals 0.42 and does not exceed 

the critical value of  6.59 at 5% significance. The hypothesis that the model is adequate 
cannot be rejected (it also appears that the parameters are not all equal to zero) and we 
proceed with the canonical analysis. The stationary point 
( 33.7, 23.6)


2.07

rs � � 2Rs s
� 2

� (1,1)rs (50, 50)

7.41 
7.17

(50, 50)

(10,10) (10, 90)
(90,10) (90, 90)

2k

with predicted 
response  is a saddle point and we perform the ridge analysis to find a point of  
minimum response in the current ROI. Such a stationary point  should satisfy r r

and should minimize the estimated response in the ROI. Lagrangean analysis yields
, which corresponds with the point . Note that the predicted response 

value for this point is , whereas the actual function value is . The point
is the centre point of  the ROI in a possible next step. 

Now, it is first checked whether the stopping criteria are met. Suppose that one of  the 
stopping criteria (to be discussed in Section 2.4) is met, then the algorithm is either stopped 
or restarted (the topic of  Section 2.5). We will point out in Section 2.3.3 that if  none of  the 
criteria is met and the stationary point is not a minimum of  the second-order model, then 
the algorithm would better return to phase 1. The half  width of  the region of  interest in 
phase 1 is then again 40 and the other ‘natural’ design points are , ,

and . The procedure is iterated until a stopping criterion (see Section 2.4) 
is met. 

2.2. Building Blocks 

Figure 2 shows the building blocks of  RSM in rectangles. Below we will discuss them 
in detail. 

2.2.1. Initialization 

At the start of  the algorithm an initial starting point and the initial size of  the region 
of  interest (ROI) should be given. A restart may ask for a different initialization: the 
starting point may be chosen randomly, be equal to the starting point used in the previous 
optimization run or equal to the best point in the previous optimization run. 

2.2.2. Approximate the Objective Function by a First-Order Model 

In order to approximate the objective function it is evaluated in the points of  an 
experimental design. There are many designs available, like fractional or full factorial, and 
two-level or three-level designs [18]. All designs can be augmented by the centre point of  
the region of  interest. In non-automated optimization the user tries to fit a first-order 
approximation with different designs, apply coding of  the variables to obtain better 
parameter estimates or recalculate the objective values in the design points. For instance, 
replicating the evaluation of  the objective function in the centre point provides protection 
against curvature [18]. 

For an automated RSM procedure we follow the literature and evaluate the objective 
function once in the  points of  a two-level full factorial design and 5 times in the centre 
point of  the current region of  interest [11, 18]. This design is orthogonal and does not 
require as many points as higher level full factorial designs. Furthermore, full factorial 
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designs can quite easily be augmented to derive a second-order design. When the number 
of  parameters  is large (say ) it is more efficient to use resolution III designs in the 
first phase [15, 18]. Eventually, the coefficients of  the first-order model are determined by 
applying least squares on the observed function values, while using coded variables to 
reduce the covariances of  the parameter estimates. 

�10kk

2.2.3. Test the First-Order Model for Adequacy 

Usually, a test for lack of  fit [29] and a test for significance of  regression are performed 
[18]. Box and Draper [4] showed that the test for lack of  fit is a joint test for interaction 
between factors as well as curvature. In non-automated optimization one can decide to use 
other tests and one can vary the significance levels based on the results from these tests. In 
automated optimization the levels should be fixed. This is subject to tests. 

2.2.4. Perform a Line Search in the Steepest Descent Direction 

If  the first-order model is adequate a line search is performed from the centre point of  
the current region of  interest in the steepest descent direction to find a point of  improved 
response. Numerous implementations of  the line search have been proposed (see [4, 11, 12, 
14, 15, 18]). We use increments  along the path of  steepest descent equal to the 
distance from the centre point to the point of  intersection of  the direction of  steepest 
descent and the sphere given by

� �1,..., k

� � �� 2
1 1k

i i . In a manual RSM algorithm one can observethe 
results of  a line search and use personal likings to stop the search. However, in automated 
optimization, the algorithm needs a stopping rule that recognizes the lack of  improvement 
in response during the line search. 

The most straightforward rule ends the line search when an observed value of  the 
objective function is higher than the preceding observation [7]. We will not use this stopping 
rule, known as the 1-in-a-row rule, because it is very sensitive to the noise in the response 
function. In a similar way, the n-in-a-row stopping rule ends the line search when
observed values of the objective function are higher than the preceding observation. 
According to the Myers & Khuri stopping rule [16], the line search is ended when the mean 
response in a line search point, is significantly (statistically) higher than the mean response 
in a preceding line search point. This rule requires evaluating the response function in a line 
search point more than once, because the variance of  the response is not known at the start 
of  the algorithm. In our algorithms we use the small sample t test in order to compare the 
mean responses in different points. This statistical test is robust with respect to both
non-normality and unequal variances (Wackerley et al. [28]). We test our version of  the 
Myers & Khuri rule against the 3-in-a-row rule for our setting, where the variance in the 
objective function is not known a priori (contrary to the set-up by Del Castillo and Myers 
and Khuri). 

n

2.2.5. Approximate the Objective Function by a Second-Order Model 

The coefficients of  the second-order model are again determined by regression analysis, 
applied to observations performed in an experimental design. A popular second-order design 
is the central composite design (CCD) [18]. The CCD arises when the full factorial design 
is augmented by adding axial points [5]. We make this design spherical by choosing the 
axial points such that all points are equidistant from the centre point of  the current ROI 
[18]. This design is near-rotatable [18]. A fully rotatable design ensures equal variance of  
the estimate of  the mean response at points equidistant from the centre point. However, for 
a fully rotatable design the distance of  the axial points to the centre point would be large as 
compared to the distance of  the existing points to the centre point. 

2k
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2.2.6. Test the Second-Order Model for Adequacy 

This module checks if  the second-order model describes adequately the behaviour of  
the objective function in the current region of  interest. Similar to the first-order model a 
lack of  fit test is performed. The null hypothesis of  this test is that the true regression model 
is quadratic. In manual optimization one can use different significance levels or decide to 
overrule the outcomes of the lack of fit test. In automated optimization one has to determine 
these levels beforehand. The exact setting of  the significance level is subject to tests. 

2.2.7. Perform Canonical Analysis and, if  Necessary, Ridge Analysis 

In the canonical analysis the stationary point of  the second-order model is located and 
classified. Ridge analysis is done when the stationary point is a maximum, a saddle point 
or a minimum outside the current region of  interest. In the ridge analysis we look for a 
point of  minimum response inside the current region of  interest since it is not correct to 
extrapolate the second-order model outside the current region of  interest [18]. 

2.3. Strategic Choices 

In Figure 2 the strategic choices are given in ellipses. Although the choice whether to 
continue, to restart or to stop the algorithm is also a strategic choice, we discuss stopping 
rules and a restart mechanism separately in Sections 2.4 and 2.5. 

2.3.1. What to Do When the First-Order Model is Adequate? 

If the first-order approximation is adequate, then the steepest descent procedure defined 
in Section 2.2.4 will be applied. The output of  this procedure is a new point, which is then 
used as the centre point of  the next region of  interest. On this new region, the objective 
function is approximated again by a first-order model [18]. 

2.3.2. How to Solve First-Order Model Inadequacy? 

If  the first-order model is not accepted, then there is some evidence of  curvature or 
interaction between factors on the current ROI, or the regression coefficients are all equal 
to zero. Most references suggest approximating the response function by a second-order 
model (see e.g. Fu [8]; Myers and Montgomery [18]). Alternatively the number of  simulation 
runs could be increased, resulting in more precise estimates of  the objective. However this 
alternative is time-consuming and does not guarantee that the inadequacy is solved. Secondly, 
the size of  the region of  interest could be decreased, but pre-tests have shown that this is 
not beneficial in this stage of  the procedure as it then gets stuck in non-optimal points. Our 
algorithm moves to the second phase if  the first-order model is inadequate. 

2.3.3. What to Do When the Second-Order Model is Adequate / How to Proceed after the 
Canonical Analysis? 

If  the second-order approximation is adequate, then the appropriate action depends on 
the location and the nature of  the stationary point. It is shown [10] that for many functions 
a first-order model is inappropriate over a large percentage of  the domain, so the algorithm 
can turn to the second phase quite early. The first stationary point found by a second-order 
approximation is therefore not likely to be the best point in the domain. If  we stop the 
algorithm at this point [8, 13] the optimum could still be located far away from the current 
ROI. We consider two alternatives. (i) If  a minimum is found inside the region of  interest, 
then this point will be used as the centre point of  a new design and a new second-order 
approximation will be performed. We suggest to reduce the size of  the ROI, to what extent 
is subject to tests, and to continue with phase 2 since we assume that we are close to the 
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minimum of the objective function. (ii) If the stationary point of  the second-order polynomial 
is not a minimum inside the region of  interest, then we perform ridge analysis to find a new 
stationary point (see Section 2.2.7). We conclude that we are not close to the optimum and 
return to phase 1. By considering these alternatives we now need stopping rules to decide 
when we are satisfied with the current solution. In Section 2.4 we discuss a number of  
stopping criteria and our tests will show the best stopping rules for specific functional forms. 

2.3.4. How to Solve Second-Order Model Inadequacy? 

If  the second-order model is inadequate, the region of  interest is too large or the 
stochastic nature of the function disturbs the approximation process. Stopping the algorithm 
at this point is only a good idea if  there is an indication that the current centre point is close 
to the optimum. For example, if the observed function values have not improved significantly 
in the last few iterations and the best function value significantly differs from the function 
value in the starting point, then the algorithm might be ended. We come back to stopping 
the procedure in Section 2.4. If  there is no such indication, the inadequacy is solved and 
the second phase done again. One way of  solving the inadequacy of  the approximation is 
increasing the precision used in evaluating a design point, i.e. variance reduction of  the 
estimated response. This way the second-order polynomial will fit the objective function 
better. We could also reduce the size of  the current region of  interest like Joshi et al. [11] 
propose. Our algorithm either reduces the size of  the current region of  interest or increases 
the precision used in evaluating the points of  the second-order design. This is subject to 
tests. 

2.4. Stopping Rules 

In most studies on RSM the use of  stopping rules is not mentioned. Of  course, in 
automated optimization the RSM algorithm needs to be ended by consistent stopping rules 
that do not end the algorithm before a good solution is found and also do not unnecessarily 
prolong the algorithm. In Section 2.3 we referred to the RSM literature where the 
optimization is ended after estimating only one second-order model (see Fu [8]; Kleijnen 
[13]). We recommend ending the optimization if  either the estimated response value does 
not improve sufficiently anymore, or, in case there are budget constraints, if a fixed maximum 
number of  (function) evaluations has been performed. In this section we motivate why 
these criteria are consistent and discuss in detail how they are incorporated in the automated 
algorithm. In our experiments we also consider the following stopping criterion: the
algorithm is ended if  the input values do not change sufficiently anymore, i.e. if  consecutive 
centre points are close to each other. 

2.4.1. The Estimated Response Does not Improve Sufficiently Anymore (IMPROVE) 

Algorithms for finding the optimum of  a deterministic function can simply be ended 
when the function value does not improve sufficiently in consecutive iterations. When 
optimizing stochastic objective functions though, one has to take noise into account. Because 
the variance of  the response is not known at the start of  the algorithm it is estimated by 
evaluating the response in the new centre point of  the region of  interest more than once. A 
statistical test has to decide whether the (stochastic) function values observed in the last few 
iterations have improved significantly. That is, can one attribute the difference between the 
mean responses in two centre points to noise? Notice that if  the mean response does not 
decrease significantly in consecutive centre points one could still make progress. For instance 
the mean response may decrease from value 10.2 to 8.1 in 5 iterations, while in each separate 
iteration the change is not significant. We therefore implement the following criterion. Stop 
the algorithm if  the mean response in the previous centre point does not differ significantly 
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from the mean response in the penultimate centre point in  consecutive iterations. It is 
important to note that the penultimate centre point is only changed in case the mean response 
differs significantly from the mean response in the previous centre point. The number of  
iterations is subject to tests. Notice that this stopping rule is based on the stopping rules for 
the steepest descent line search. It makes use of  elements of  both the Myers & Khuri rule 
as well as the n-in-a-row rule. In terms of  our example we would thus employ the small 
sample t-test to find out whether the mean response in  differs from that in .

n

(10,10) (50, 50)

2.4.2. Convergence of  Input Values (CONVERGE) 

Algorithms that are used to find the optimum of  a deterministic function are usually 
ended if the input parameters of the function do not change anymore. Therefore, we propose 
to end the algorithm if  the Euclidean distance between two consecutive centre points is 
small, i.e. less than �k� , where is a small number and  is the number of  parameters 
of  the objective function. In this way, the precision of  each estimated parameter will be 
approximately equal to

k

� . In our example the Euclidean distance between the last two 
candidate solutions equals 

2 2(50 10) (50 10) 56.6
 � 
 � .                         

2.4.3. Fixed Maximum Number of  Function Evaluations (MAXEVAL) 

Our interest in the RSM is especially intended for stochastic models where the
evaluation of the corresponding stochastic objective function is expensive or time-consuming. 
Therefore, ending the algorithm after a maximum number of function evaluations is
appropriate when there are budget constraints. Notice that this stopping criterion does not 
consider the noise in the objective function. In our example � �9 4 13 evaluations are 
performed. 

The stopping rules discussed in this section are applied after both phases. It is then 
decided whether the algorithm is continued, restarted or really terminated. 

2.5. A Restart Mechanism 

Because RSM is a local search method there is no guarantee for finding a global
optimum. The first centre point used in the RSM procedure is either selected by the user or 
randomly chosen and can influence the outcome of  the procedure. Neddermeijer et al. [19] 
consider multiple starting points and/or multiple searches from the same starting point, 
when optimizing a stochastic objective function. In this study, we will use an adjusted
mechanism that is based on these suggestions. 

In order to escape from a non-optimal region the algorithm is restarted as soon as the 
algorithm is ended by one of  the stopping criteria. The starting point of  the restart is the 
best centre point of the ‘normal run’. Because the algorithm cannot escape from a
non-optimal region when the size of  the region of  interest is too small, the size of  the region 
is reset to its initial value. The restart can now either confirm the quality of the solution 
already found or admit that there exists a better solution. 

In general one should apply randomly chosen starting points when optimizing stochastic 
objective functions. If  one has information about the unimodality of  a function, it may not 
be necessary, especially if one has some idea about a good starting point. In the test problems 
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we consider in this paper such was the case and we restart always in the same point. In this 
study we will run algorithms more than once starting from the same point. This can be seen 
as another restart mechanism and will give insight in the consistency of  algorithms. We will 
come back to this in Section 5. 

In all optimization runs the best solution, i.e. the parameter values for which the mean 
response of  the stochastic objective function is best, will be remembered. So our restart 
procedure cannot deteriorate the solution found in the ‘normal’ optimization run. Note 
that since the response function is stochastic, it is possible that the mean response measured 
in a non-optimal point is better than the mean response measured in the real optimal point. 

2.6. Parameter Settings 

A number of  parameter settings are subject to pre-tests. For instance, the lack of  fit test 
can be performed at different significance levels. The size of  the increment in the precision 
of  the function evaluation in the design points is also subject to tests. Furthermore, it is 
tested by how much the size of  the region of  interest is decreased in order to solve the 
inadequacy of  the second-order model. 

3. Test Design 

In a pre-testing phase we determine the parameter values that give the best performance 
with respect to running time and quality of  the solutions returned. In our experiments we 
consider only choices that we feel have the most impact on the efficiency of the RSM 
procedure. We benchmark our set-up against the set-up by Fu [8] who stops after doing the 
second phase only once. 

In particular we consider the following alternatives. We test the 3-in-a-row stopping 
rule against our version of  the Myers & Khuri stopping rule for the steepest descent line 
search. Myers and Khuri [17] conclude that their stopping rule dominates the 3-in-a-row 
rule for stochastic functions with known variance. When the variance is not known it is not 
sure whether the Myers & Khuri rule is still as successful. One can expect that algorithms 
using this rule are less efficient since every point in the line search is evaluated 5 times. 

When the second-order model is adequate and a minimum is found within the region 
of  interest we assume that we are close to an optimal solution. We then shrink the region of  
interest with either 50% or 10%. These values are already set by pre-testing, but the difference 
between these shrink-percentages is important. When the size of  the region of  interest is 
decreased by 10% it will take more time to focus on a certain region that is suspected to 
contain the global optimum and the algorithm could be prolonged unnecessarily. However 
if  we shrink the region of  interest too soon, we are at higher risk of  returning a non-optimal 
solution. The success of  the alternatives will closely interact with the stopping rules and the 
restart procedure. For instance, we expect that the 50% shrink procedure (ensures fast
convergence) in connection with a strict stopping rule with respect to noise (which avoids 
unnecessary prolongation and ensures fast convergence) and a restart procedure that returns 
to the original size of  the region of  interest (recognize quality of  solutions) will perform 
well. 

When the second-order approximation is rejected either the noise is dominant or the 
region of  interest is too large. In order to solve this problem we either reduce the noise, e.g. 
by performing more simulation runs, or we reduce the size of  the region of  interest. We 
think that algorithms using noise reduction will give more accurate results since the quality 
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of  the estimates of  the response function is increased. We expect the running time to be 
higher for these algorithms. 

As a result we will test eight algorithms, using all proposed alternatives in combination 
with the others. For all these eight algorithms we will study the effect of  the stopping rules 
and restart procedure explained in Sections 2.4 and 2.5. 

The set-up of  the experiments is now as follows. First we apply the algorithms for a 
large number of  iterations and for each algorithm we record the relevant values for the 
application of the stopping criteria. Especially, at each iteration we record (the mean response 
in) the current (best) centre point, the number of  function evaluations and the Euclidean 
distance between the current and the last centre point. We then decide on the exact setting 
of each stopping rule such that the average performance of each algorithm for a test set 
defined in the next section is “best”. Each algorithm can have a different setting of the 
stopping rules for which it performs best. 

In the first place, the criteria for the preferred performance of  the stopping rules are 
based on the precision of  the solutions compared to the deterministic values of  the test 
functions. Precision is measured in two ways. On the one hand we look at the error of  an 
optimization run, which is defined as the absolute difference between the true objective 
value in the true optimal point and the true objective value in the observed best point of  the 
run. On the other hand we consider the distance of  an optimization run, which is defined 
as the Euclidean distance between the true optimal point and the observed best point of  the 
run. Notice that we have full knowledge of the optima of the test functions and corresponding 
solution values. We can therefore observe the parameters of  each stopping rule of  the RSM 
procedure for every test function and determine when the procedure is no longer effectively 
improving the solutions. 

Secondly, the preferred performance of  the stopping rule is also based on the running 
times of  the algorithms needed to fulfill the different settings of  the stopping criteria. We 
measure the running time by the number of  function evaluations. Note that the standard 
deviation of  the error and the distance of  optimization runs can be used as an indicator of  
the consistency of  an algorithm. 

The settings of  the algorithms are now taken such that the average performance, i.e. 
quality and running time, over all test functions is best. We do this because there is no a 
priori knowledge of  the objective function. Note that each algorithm is applied on each test 
function 100 times to find the average behaviour of  the algorithm. 

In a second phase of  experiments we run the algorithms again for the new settings of  
the stopping rules and we apply a restart procedure when each algorithm is stopped. The 
restart procedure is applied once and the result of  the algorithm after the restart is returned 
as the output of  the algorithm. We apply each algorithm 100 times on each test function. 
Note that the replication of  an optimization run is in itself  a restart procedure and therefore 
allows us to compare two different restart strategies. The performance of  the eight algorithms 
is compared to the performance of  four algorithms using the set-up of  Fu [8], applied to the 
same set of  test functions. Note that we deal with four algorithms since these algorithms 
are ended when the objective is approximated adequately by a second-order polynomial 
once. So, for these algorithms the third column of  Table 1 (‘Shrink region of  interest’) is of  
no importance. We call these algorithms the Fu versions of  the algorithms in Table 1. These
algorithms can be seen as examples of  applying response surface techniques manually. 
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Table 1. The test design. 

Algorithm
Stopping rule 

steepest descent

Shrink region of  

interest

Solve second-order model 

inadequacy

1 3-in-a-row 50% Noise reduction 

2 3-in-a-row 50% Shrink design 

3 3-in-a-row 10% Noise reduction 

4 3-in-a-row 10% Shrink design 

5 Myers & Khuri 50% Noise reduction 

6 Myers & Khuri 50% Shrink design 

7 Myers & Khuri 10% Noise reduction 

8 Myers & Khuri 10% Shrink design 

4. The Test Problems 

We test the optimization algorithms on a set of  seven test functions, which consist of  a 
deterministic and a stochastic term. Their optima are known. These functions have also 
been used in comparing different versions of  the Nelder and Mead simplex method (NMSM) 
and in comparing RSM algorithms with NMSM algorithms [20, 21]. A simulation version 
of  an existing cancer-screening model is also considered. This model has three parameters 
that need to be estimated from an observed data set using minimization of  a goodness-of-fit 
statistic [21]. Although for this particular model the optimal parameters can also be
determined analytically, we are interested in the performance of  the RSM procedure for this 
simulation model, as for more complicated medical simulation models one needs a
standardized application of  RSM. 

4.1. One-Stage-One Test Breast Cancer Model 

The simulation model is a simulation implementation of  the breast cancer-screening 
model developed by Day and Walter [6]. In this model only one disease stage, the detectable 
pre-clinical phase (DPCP) is modelled. The DPCP has incidence rate  and it is assumed 
that the duration of  the DPCP is exponentially distributed with parameter

J
� . At the end of  

the DPCP a cancer is clinically detected, whereas during the DPCP a cancer can be 
detected by breast cancer screening. 

A screening program of  four annual screening rounds is simulated. The sensitivity of  
the screening test is denoted by � . In each run 50,000 individual life histories, including 
the disease processes and the impact of  screening, are simulated. The simulation model 
generates detection rates at each of  the screening rounds and incidence rates of  clinical 
disease in the period following a negative screening test, for each of  the screening rounds 
and for different intervals since the screening test. 

The model is applied to data from the first randomized trial for breast cancer screening, 
viz. the HIP study [6, 22, 25]. In the HIP study approximately 62,000 women, who were 
aged between 40 and 64 at entry, were randomly allocated to either a study group or a 
control group. Only the study group was offered annual breast cancer screening for four 
years. About 65 percent of  the study group (20,166 women) agreed to take part and were 
screened at least once (these women all attended the first screening). We will use follow-up 
data until 5 years after the last screening. The results from the HIP screening trial that will 
be used are described by Day and Walter [6], and consist of 4 detection rates and 14 incidence 
rates of  interval cancers occurring after a previous negative test result. 
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��The parameters ,J , and are estimated from the observed data set through 
minimization of  a chi-square goodness-of-fit test statistic. The simulation objective function 
is given by 
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where  is the observed number of  cancers during screening round or interval  and iiO iE
is the number of  simulated cancers during screening round or interval , .�1,...,18ii

The true optimal parameters of  the model for the HIP data were derived using the 
objective function 
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where i  is the number of  cancers during screening round or interval , , as 
predicted by the analytical implementation of  the breast cancer screening model [6]. The 
optimal parameters

�1,...,18iiA

� �� � �( , , )J of  the model, applied to the HIP data, were determined 
by extensive enumeration (using step sizes 
510 
310for ,J for � , and  for
310 � ) of  

� �( , , )f J : .� �� � � � �( , , ) (0.00213, 0.614, 0.871) 13.343f J f

The fact that we know the optimal parameter makes it attractive to apply our algorithms 
to this stochastic objective function. Assuming that the noise in the objective function due 
to simulation is approximately normally distributed, RSM is a suitable optimization method. 
Moreover, since many simulation runs are necessary to evaluate the stochastic objective 
function, it is worthwhile to apply an optimization method that does not need many function 
evaluations. 

Table 2. The seven deterministic test functions. 

Name Functional form Minimum 
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4.2. The Test Functions 

In addition to the HIP screening simulation model we test randomized versions of  
seven deterministic unconstrained nonlinear minimization problems. These functions have 
been extensively used in testing optimization algorithms. All problems have a unique global 
optimum. The test functions show a characteristic behaviour that may occur in stochastic 
objective functions resulting from simulation models. The deterministic test functions are 
randomized by adding a normal distributed error term with zero mean and variance 2 1	 � .
For each optimization run we use independent random number streams. The test functions 
are given in Table 2. 

5. Results 

Preliminary tests give us the best settings of  the parameters we described in Section 2.6. 
Table 3 shows these settings. 

Table 3. Parameter settings. 

Parameter Setting

Significance level of 

all statistical tests 
5%

Shrink design for solving 

second-order inadequacy 
50%

Increase precision for solving

second-order inadequacy 
0.95 / 25%

Notice that the last row of  Table 3 contains two entries: 0.95 and 25%. In order to 
solve second-order model inadequacy, the variance of  the error term is multiplied by 0.95 
for the seven randomized deterministic test problems; for the simulation model the number 
of  simulated life histories is increased by 25%. We expect that the latter has almost the 
same effect on the variance of  the objective function of  the simulation model. 

5.1. Phase 1 

In phase 1 of our numerical experiments we determine the exact settings of  the stopping 
criteria. To this end we have recorded the results of the eight specified algorithms for a
number of  settings of  the stopping criteria. These settings are shown in Table 4. Note that 
the settings of  the stopping rules may depend on the number of  parameters (k) of  a test 
problem.

Table 4. Possible settings of  stopping criteria, with  the number of  parameters. k

Stop Criterion Setting Unit / Quantity 

IMPROVE 5, 10, 15, 20, 25 
Number of  consecutive iterations with 

non-signifcant change of  function 

CONVERGE 5E-04, 1E-03, 2E-03, 5E-03, 1E-02 Euclidean distance 

MAXEVAL 50 2k, 100 2k, 150 2k, 200 2k, 250 2k Number of  evaluations 
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In Tables 5(a)-(c) the results of  the application of  algorithm 1 on the Powell, Beale and 
Wood test functions are shown. The results for this algorithm and these test problems are 
representative for all experiments in phase 1 and show that the restart mechanism and good 
stopping rules are necessary. 

Tables 5(a)-(c) show that the more iterations an algorithm runs the lower the error is. 
However, it appears that the Euclidean distance between the estimated parameters and the 
actual location of  the minimum is not always smaller when the algorithm runs longer. This 
especially holds for the optimization of  the Powell and the Beale function. This is probably 
due to the fact that these functions are very steep. We expect that the restart mechanism 
solves this problem as it enlarges the ROI. 

It is striking that the standard deviations of  the errors of  the algorithms are roughly of  
the same order of  magnitude as the errors themselves. This points out that the algorithms 
do not consistently perform well; a small part of  the solutions found worsens the mean 
error. However, there is a high probability that a good solution is found when we an 
algorithm is applied more than once to the same problem. 

Table 5(a). Results of  applying algorithm 1 on the Powell function. 

Stop Criterion SETTING ERROR DISTANCE nEVAL 

IMPROVE 5 0.746 (0.60) 0.288 (0.086) 1628 (238) 

10 0.472 (0.41) 0.263 (0.075) 2113 (525) 

15 0.370 (0.37) 0.259 (0.080) 2735 (1253) 

20 0.302 (0.31) 0.260 (0.090) 3601 (1976) 

25 0.261 (0.27) 0.259 (0.091) 4562 (2686) 

CONVERGE 1.0E-03 0.276 (0.35) 0.260 (0.092) 5542 (3061) 

2.0E-03 0.208 (0.27) 0.265 (0.091) 8864 (3707) 

4.0E-03 0.172 (0.15) 0.262 (0.078) 11634 (3807) 

1.0E-02 0.187 (0.16) 0.264 (0.078) 12898 (3258) 

2.0E-02 0.185 (0.14) 0.267 (0.095) 13598 (2341) 

MAXEVAL 800 3731 (642) 3.94 (0.33) 800 (0) 

1600 0.665 (0.60) 0.280 (0.085) 1600 (0) 

2400 0.369 (0.38) 0.255 (0.081) 2400 (0) 

3200 0.278 (0.27) 0.254 (0.079) 3200 (0) 

4000 0.260 (0.27) 0.256 (0.081) 4000 (0) 

Max. iterations 500 0.169 (0.17) 0.278 (0.11) 18103 (236) 

Note: The first column in Tables 5a-5c contains the name of  the stopping criteria 
and in the second column the setting of  each criterion is given. The third column 
(ERROR) shows the mean (standard deviation) of  the absolute differences between 
the optimal value and the true objective value in the solution found. In the fourth 
column (DISTANCE) the mean (standard deviation) of  the Euclidean distances 
between the actual minimum and the solution found is given. The fifth column 
(nEVAL) shows the mean (standard deviation) of  the number of  evaluations 
needed to fulfill the different stopping criteria. The last row contains the results of  
ending the algorithm after the maximum number of  iterations, in this case 150. 



Automated Response Surface Methodology for Simulation Optimization Models                   341 
As it was stated before, the performance of  an algorithm does not only depend on the 

precision of  the solutions found, but also on the computing time. When optimizing 
stochastic objective functions the number of  function evaluations needed to obtain a certain 
solution is an important indicator for the computing time. The values in the last column in 
Tables5a-c show that the difference in the number of  function evaluations between the least 
restrictive setting and the most restrictive setting of  stopping criteria CONVERGE and 
IMPROVE can be quite large. The extra running time needed to increase the precision does 
not always balance the extra computing time. For example, for the Beale function we find 
that the second setting of  CONVERGE requires 569 evaluations on average. The precision 
of  the solution found however, is not much worse than the solution resulting from ending 
the algorithm by the fourth setting of  CONVERGE, requiring twice as many evaluations. 
Moreover, when the algorithm is ended after 150 iterations, requiring more than 3000 
evaluations, the precision of the solution found is not much better. Thus, it only seems useful 
to prolong the optimization run for the Powell and the Wood functions. 

The mean error, the mean Euclidean distance and the mean number of  evaluations do 
not tell the whole story. Therefore we have also compared the 100 observed errors, distances 
and number of  evaluations separately for all algorithms by using nonparametric statistical 
tests. This way we determined whether there is any stochastic difference between the different 
settings of  the stopping criteria CONVERGE, IMPROVE and MAXEVAL. The specific 
nonparametric test we applied is the Kruskal-Wallis test (see e.g. Wackerley et al. [28]). 

Table 5(b). Results of  applying algorithm 1 on the Beale function. 

Stop Criterion SETTING ERROR DISTANCE nEVAL 

IMPROVE 5 0.329 (0.31) 1.88 (0.029) 281 (118) 

10 0.283 (0.19) 1.87 (0.035) 517 (269) 

15 0.266 (0.18) 1.88 (0.036) 805 (405) 

20 0.255 (0.17) 1.88 (0.045) 1038 (520) 

25 0.254 (0.17) 1.88 (0.044) 1218 (613) 

CONVERGE 7.071E-04 0.319 (0.30) 1.88 (0.038) 354 (193) 

1.414E-03 0.264 (0.19) 1.88 (0.046) 569 (305) 

2.828E-03 0.249 (0.17) 1.88 (0.052) 863 (418) 

7.071E-03 0.241 (0.16) 1.88 (0.054) 1076 (458) 

1.414E-02 0.243 (0.16) 1.88 (0.054) 1266 (542) 

MAXEVAL 200 0.347 (0.32) 1.88 (0.024) 200 (0) 

400 0.275 (0.20) 1.87 (0.035) 400 (0) 

600 0.263 (0.18) 1.87 (0.038) 600 (0) 

800 0.262 (0.18) 1.88 (0.042) 800 (0) 

1000 0.241 (0.16) 1.88 (0.056) 1000 (0) 

Max. iterations 150 0.228 (0.14) 1.88 (0.074) 3272 (133) 

The nonparametric tests do not give identical answers for the different test problems. It 
appears that for most of  the test functions less restrictive settings of  the three stopping 
criteria do not result in statistically lower errors and distances. That is, running the 
algorithms longer does not improve the precision of  the solutions found. However, the 
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errors and distances for the Wood and the Powell function and to a less extent the Beale 
and the Rosenbrock function are significantly lower when the settings are less restrictive. Of  
course the computing time, measured as the number of  function evaluations, increases 
significantly when the settings of  the stopping criteria are less restrictive. The results of  the 
nonparametric tests are uniform over the different algorithms. 

Table 5(c). Results of  applying algorithm 1 on the Wood function. 

Stop Criterion SETTING ERROR DISTANCE nEVAL 

IMPROVE 5 4.96 (4.0) 0.533 (0.19) 1720 (402) 

10 2.76 (3.7) 0.396 (0.20) 2577 (735) 

15 1.99 (2.6) 0.348 (0.17) 3515 (1247) 

20 1.62 (2.1) 0.325 (0.16) 4588 (1941) 

25 1.50 (2.1) 0.315 (0.16) 5775 (2598) 

CONVERGE 1.0E-03 16.7 (14) 0.930 (0.36) 1128 (586) 

2.0E-03 2.42 (4.0) 0.360 (0.22) 3507 (1724) 

4.0E-03 1.26 (2.0) 0.294 (0.16) 9183 (3780) 

1.0E-02 1.38 (2.0) 0.310 (0.16) 11109 (4137) 

2.0E-02 1.57 (2.2) 0.323 (0.17) 11366 (3945) 

MAXEVAL 800 31.8 (25) 1.27 (0.45) 800 (0) 

1600 5.62 (4.0) 0.572 (0.18) 1600 (0) 

2400 2.64 (3.3) 0.395 (0.18) 2400 (0) 

3200 2.04 (2.9) 0.351 (0.18) 3200 (0) 

4000 1.67 (2.5) 0.327 (0.17) 4000 (0) 

Max. 

iterations 
500 1.06 (1.8) 0.277 (0.16) 18085 (252) 

Since we want to find algorithms that optimize all test functions very precisely we 
cannot choose the settings of  the stopping rules too restrictive (in phase 2). In Table 6 the 
settings of  the rules IMPROVE and CONVERGE are given. These settings (see Table 4 for 
their definition) are used to end the algorithms in our second phase of  experiments. We 
decided not to use MAXEVAL since this rule ends the algorithms on almost the same 
moment as IMPROVE. We prefer IMPROVE since it takes noise into account whereas 
MAXEVAL is a more rigid rule. As a consequence, we allow both IMPROVE and
CONVERGE to terminate the algorithms in the second phase of  experiments. 

Table 6. Settings of  the different stopping criteria for all test functions in phase 2. 

Algorithm 

Stopping rule 
1 2 3 4 5 6 7 8

IMPROVE 5 4 5 4 5 4 4 4

CONVERGE 2 2 3 3 3 3 3 3

MAXEVAL --- --- --- --- --- --- --- ---
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5.2. Phase 2 

In phase 2 of  the experiments we study both the eight algorithms with the settings as 
given in Table 6 and we test versions of  these algorithms that are ended quite early. We 
expect that a comparison of  both groups of  algorithms gives us some understanding of  the 
performance of our algorithms and in particular of the quality of our stopping rules. 
Moreover we test whether restarting the algorithm improves the precision of  the solution. 

In Table 7 the mean errors and the mean number of  evaluations of  the four Fu 
algorithms are shown. Note that we use the numbering of  the algorithms as given in Table 
1. This is done because the four Fu versions resemble the algorithms in Table 1, but they 
are ended when an adequate second-order model is estimated. In these algorithms there is 
no action taken when a minimum is found. 

Table 7 shows that the restart mechanism improves the precision of  the solution found 
after the ‘normal’ run considerably for most test functions and also contributes to a more 
consistent performance of  the algorithm. For most test functions the quality of  the solutions 
found in the normal run is quite bad. This is mainly due to the fact that the total number of  
evaluations is low in comparison with the most restrictive settings of  our stopping rules, cf. 
Tables 5(a)-5(c). The Fu versions of the algorithms just do not perform enough function 
evaluations to find an accurate solution. 

In columns 2-4 of  Table 8 the mean errors resulting from the application of  the eight 
different algorithms on the test functions are shown. Algorithm 3 serves as a benchmark 
and in general algorithm 5 finds the smallest errors and standard deviations. The latter 
algorithm ends the line search using the Myers & Khuri rule, shrinks the region of  interest 
by 50% when a minimum is found and solves the second-order model by reducing the noise 
in the objective values. 

Table 7. Results of  applying the four Fu algorithms on all eight test functions. 

NO RESTART RESTART 

Test Function ERROR nEVAL ERROR nEVAL – add. 

Rosenbrock function 9.92 (86) 1 107 (10) 1.11 (0.18) 6 49.7 (102) 

Powell singular function 19334 (0.0) 1 34.6 (4.1) 18287 (0.0) 1 36.9 (8.7) 

Gaussian function 0.96 (1.16) 1 37.7 (13) 0.24 (0.25) 1 23.1 (8.5) 

Parabolic function 735 (2924) 5 1187 (282) 0.23 (0.17) 6 160 (296) 

Asymmetric function 2.40 (10.8) 6 1688 (502) 0.33 (0.36) 1 853 (605) 

Beale function 1134 (746) 2 42.9 (36) 620 (732) 5 120 (155) 

Wood function 4026 (3219) 2 207 (264) 2184 (2965) 2 230 (251) 

Simulation model 0.094 (0.11) 5 27.5 (9.6) 0.085 (0.108) 5 25.0 (4.2) 


Note 1: nEVAL add. = additional number of  evaluations. 
Note 2: The first column of  Table 7 shows the eight test functions. The second column 
shows the smallest mean error among the four Fu algorithms (numbered 1, 2, 5 and 6); error 
has been defined as the absolute difference between the true objective value in the true 
optimal point and the true objective value in the observed best point of  the run. Superscripts 
denote the version of  the Fu algorithm for which the minimum is attained. The third column 
shows the mean (standard deviation) of  the number of  evaluations performed by the 
algorithm without restart that yields the smallest mean error. The fourth and fifth column 
give the same performance measures for the algorithms with restart, but note that the fifth 
column shows the mean of  the additional number of  evaluations performed in the restart. 
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A comparison with Table 7 learns that the precision and consistency of the eight
algorithms is higher than it is for the Fu versions. This can be proved by nonparametric 
statistical tests. On the other hand the Fu versions need significantly less function evaluations 
to find solutions. 

Although the eight algorithms perform better than the Fu algorithms, these algorithms 
do not consistently perform well. Actually, it turns out that the algorithms sometimes get 
stuck in non-optimal points and in a number of  optimization runs the first-and second-order 
models are repeatedly inadequate in the first few iterations. As a consequence the region of  
interest is decreased repeatedly and the algorithm is ended by one of  the stopping rules. Of  
course, one or two of  these bad solutions can really influence the mean error. We have to 
note here that in the point  one of  the partial derivatives of  the Rosenbrock function 
is equal to 0. The objective value in this point is 1. The algorithms are usually stuck in this 
point, but this is not caused by inadequate approximations of  the functional form of  the 
objective. 

(0, 0)

Table 8. Results of  the eight algorithms using the 
new stopping criteria specified in Table 6. 

Mean error Mean of best 10 errors Mean # of evaluations 

Test function algo 3 best avrg algo 3 best avrg algo 3 min avrg 

Rosenbrock 

function

1.16 

(0.27) 

1.03 5

(0.16) 
1.11

0.826 

(0.070)

0.758 5

(0.157)
1.07

405

(157) 

318 4

(123) 
658

Powell sing. 

function

0.25 

(0.24) 

0.24 5

(0.23) 
0.65

0.019 

(0.013)

0.020 1

(0.012)
0.37

4239 

(1951)

2391 4

(820) 
3833 

Gaussian 

function

0.17 

(0.20) 

0.16 5

(0.15) 
0.17

0.003 

(0.002)

0.003 3

(0.002)
0.12

662

(275) 

568 4

(167) 
957

Parabolic 

function

0.22 

(0.17) 

0.20 5

(0.13)) 
0.23

0.037 

(0.016)

0.037 3

(0.016)
0.18

4968 

(4035)

2784 4

(1559) 
4694 

Asymmetric 

function

0.20 

(0.16) 

0.18 7

(0.15) 
0.27

0.032 

(0.012)

0.030 7

(0.011)
0.18

31121

(21364)

162698

(9588) 

2326

2

Beale

function

0.31 

(0.25) 

0.20 5

(0.10) 
0.32

0.129 

(0.002)

0.123 5

(0.005)
0.18

398

(165) 

382 4

(145) 
664

Wood 

function

4.77 

(7.8) 

0.81 5

(0.87) 
14.5

0.083 

(0.039)

0.077 5

(0.050)
7.60

2701 

(1116)

2138 4

(861) 
3916 

Simulation 

model

0.061 

(0.074) 

0.061 3

(0.074) 
0.081

0.004 

(0.002)

0.003 4

(0.001)
0.05

202

(113) 

184 7

(113) 
389

Note: The first column shows the eight test functions. Columns 2-3 contain the mean error (and 
the standard deviation of  the error) of  algorithm 3 (algo 3), which serves as a benchmark and 
the algorithm that yields the smallest mean error (best). Column 4 (avrg) shows the average of  
the mean error over the eight algorithms. Columns 5-7 contain similar performance measures as 
columns 2-4, but now with respect to the mean of  the best 10 errors (out of  100). Columns 8-9 
show the mean number of  evaluations for algorithm 3 (algo 3) and for the algorithm that needs 
the smallest number of  evaluations (min). Column 10 (avrg) contains the average of  the mean 
number of  evaluations over the eight algorithms. Superscripts denote the algorithm for which 
the smallest mean error or number of  observations is obtained. 

Columns 5-7 in Table 8 show the mean of  the ten smallest errors resulting from the 
application of  the eight algorithms on the test functions. Both the mean and standard 
deviation of  the ten smallest errors are small compared to the mean and standard deviation 
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of  all errors. This indicates that the algorithms perform very well in at least 10% of  the 
optimization runs. In general algorithms 3 and 5 find the most precise solutions. Note that 
if  the objective function is unknown the only way to select the best solutions is to run many 
simulations for the solutions found. Although it may be somewhat time-consuming to 
perform a number of  optimization runs and then select the best solutions, it can be really 
advantageous. This is a discussion point to which we return later. 

In columns 8-10 of  Table 8 the mean number of  evaluations resulting from the 
application of  the eight different algorithms on the test functions is shown. It can be seen 
that algorithm 5 needs the highest number of  evaluations, whereas its natural counterpart, 
algorithm 4, needs the least number of  evaluations. This is not surprising since algorithm 5 
uses the Myers & Khuri rule to end the line search and this rule requires evaluating the 
objective function more than once in each point on the line. The individual results (not 
shown here) show that algorithms using this rule in general need more evaluations. This 
also holds for algorithms using noise reduction to solve second-order model inadequacy 
also in comparison with algorithms that shrink the region of  interest. Moreover, algorithms 
that shrink the region of  interest by 50% when a minimum is found need more evaluations 
than algorithms that shrink it by 10%. It is difficult to explain the latter results; we expected 
the counterpart since shrinking the region of  interest by 50% a number of  times results in a 
very small region. 

Table 9. Results of  the eight algorithms using the restart mechanism 
and the new stopping criteria specified in Table 6. 

Mean error Mean of best 10 errors Mean # of add. evaluations 

Test function algo 3 best avrg algo 3 best avrg algo 3 min. avrg 

Rosenbrock 

function

1.11 

(0.21) 

1.02 5

(0.15)
1.07

0.805 

(0.070)

0.731 5

(0.146)
0.86 

275

(151) 

250 4

(121) 
410

Powell sing. 

function

0.21 

(0.19) 

0.19 5

(0.18)
0.28

0.016 

(0.012)

0.018 5

(0.009)
0.04 

2688 

(1988) 

1475 4

(886) 
2150 

Gaussian 

function

0.15 

(0.14) 

0.13 4

(0.15)
0.15

0.003 

(0.002)

0.003 3

(0.002)
0.01 

642

(286) 

517 4

(229) 
879

Parabolic 

function

0.21 

(0.17) 

0.19 5

(0.12)
0.21

0.037 

(0.016)

0.037 3

(0.016)
0.05 

4446 

(4039) 

2728 4

(1612) 
3494 

Asymmetric 

function

0.19 

(0.16) 

0.14 7

(0.11)
0.20

0.030 

(0.011)

0.030 7

(0.010)
0.04 

23214 

(19591)

143118

(9591) 
18581

Beale

function

0.28 

(0.24) 

0.20 6

(0.11)
0.23

0.128 

(0.002)

0.122 5

(0.004)
0.13 

300

(185) 

251 4

(140) 
415

Wood 

function

1.18 

(2.67) 

0.41 5

(0.43)
2.91

0.057 

(0.024)

0.029 5

(0.019)
0.48 

1856 

(1357) 

1584 4

(903) 
2154 

Simulation 

model

0.056 

(0.055) 

0.056 3

(0.055)
0.07

0.004 

(0.002)

0.003 4

(0.001)
0.0046

166

(113) 

163 7

(91) 
357

Note: The first column shows the eight test functions. Columns 2-3 contain the mean error (and the 
standard deviation of  the error) of  algorithm 3 (algo 3), which serves as a benchmark and the algorithm 
that yields the smallest mean error (best). Column 4 (avrg) shows the average of  the mean error over the 
eight algorithms. Columns 5-7 contain similar performance measures as columns 2-4, but now with 
respect to the mean of  the best 10 errors (out of  100). Columns 8-9 show the mean number of  
evaluations for algorithm 3 and for the algorithm that needs the smallest number of  evaluations. 
Column 10 (avrg) contains the average of  the mean number of  evaluations performed in the restart over 
the eight algorithms. Superscripts denote the algorithm for which the smallest mean error or number of  
observations is obtained. 
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In Table 9 some results of  the application of  the eight different algorithms using the 
restart mechanism on the test functions are shown. The Powell and Wood function benefit 
the most from the restart. Both the mean as well as the standard deviation of  the errors is 
lower for these functions after applying the restart. Also, algorithm 5 finds the smallest 
errors and standard deviations. However, the standard deviations of  the errors of  this 
algorithm are most of  the times of  the same order of  magnitude as the errors themselves. 
So, it also finds bad solutions. 

Columns 5-7 in Table 9 show that the ten best solutions found are much better than the 
ten best solutions found in the original run of  the algorithms. The mean errors of  algorithms 
3 and 5 are smallest. Columns 8-10 of  Table 9 show that algorithm 4 needs the least number 
of  evaluations to find a solution in the restart. 
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Figures 3(1)-(8): Mean number of  evaluations versus mean error of  algorithms. 
Note: 1r denotes algorithm 1 using the restart mechanism.
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In Figures 3(1)-(8) we have plotted the mean number of  evaluations against the mean 

error of every algorithm for each test function. This way we can distinguish efficient 
algorithms, i.e. algorithms that find precise solutions in reasonable time. We call algorithms 
efficient when they are closer to the origin than other algorithms. Note that we did not plot 
all test functions in each Figure; if  the error of  an algorithm is too big the algorithm is not 
in the Figure. It appears that algorithm 5r (i.e. algorithm 5 using the restart mechanism) 
finds precise solutions for almost every test function, whereas algorithm 4 is the fastest 
algorithm. However, as we observed earlier, there is no particular algorithm that is really 
efficient, i.e. both fast and precise. It seems that algorithm 7 using the restart is most 
efficient among the algorithms we have studied concerning the average precision over 100 
optimization runs. After all, this algorithm appears to be closest to the origin in most of  the 
Figures. We also have to mention algorithm 5 since it is almost equally efficient for a 
number of  test functions. Note that the only difference between algorithms 5 and 7 is the 
‘shrinking percentage’. Also note that the reader is allowed to determine for himself  which 
algorithm is most efficient. The efficiency utility curve expressing how much value one 
assigns to a combination of  precision and computing time, may differ among people. Some 
prefer fast algorithms with relatively low precision to relatively slow algorithms with high 
precision. Others may think precision and computing time are equally important. 

Figures 4(1)-(8) show plots of  the mean number of  evaluations against the mean error 
of  the best ten solutions of  every algorithm for each test function. Here we use the mean 
number of  evaluations over all 100 optimization runs, since we need to do all runs before 
we can determine the best ten solutions. We mentioned earlier that the best ten solutions of  
algorithm 3 (without restart) are relatively precise. It appears that this algorithm does not 
need much more evaluations than algorithm 4, which is the fastest algorithm on average. So 
we may call algorithm 3 efficient among the other algorithms, in the sense that selecting the 
ten best solutions of  this algorithm results in a high precision in reasonable time. Algorithm 
3 uses the 3-in-a-row rule and noise reduction. The former setting yields a lower computing 
time, the latter a higher precision. Apparently this combination is efficient. 

6. Discussion 

In this section we discuss a number of  important issues when using an optimization 
technique like RSM. First of  all, the algorithms we have studied can serve as a benchmark 
algorithm in other studies. Here we aim at algorithm 5 in combination with the restart 
mechanism, since it is the most precise algorithm, but also at algorithm 3, which seems to 
be the most efficient algorithm concerning the ten best solutions. Moreover, algorithm 7 
can be used as benchmark for testing the efficiency concerning all solutions. 

Secondly, although the restart mechanism should not be regarded as a procedure that 
always recovers an algorithm when it is stuck in a bad point (solution), we have seen that 
the restart mechanism increases the precision of  the algorithm for most test functions. The 
main lesson is that regularly enlarging the region of  interest during the optimization run, 
may lead to better solutions. 

An important question that is not fully answered yet is how we can employ time best 
to search the domain of  the objective function. One possible answer to this question is by 
utilizing strict stopping criteria, which avoid unnecessary prolongation, and multiple restarts. 
Currently, the algorithm is restarted after it stops for the first time. In an alternative version 
the decision to restart may be based on the quality of  the solution. Unfortunately, the only 
way to find out whether the current best point is ‘good’ is by comparing it with the starting 
point or points found in previous iterations, both with respect to the location and the 
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function value of the points. As long as the function value improves significantly in
subsequent runs, we may want to apply the restart mechanism. Combining strict stopping 
rules and multiple restarts may lead to better results than combining long optimization runs 
and few restarts. Especially when one does not have prior knowledge of  the location of  the 
optimum, the domain should first be explored. We have seen that lengthy optimization 
runs narrow the search down to a certain region too early. The exact number of  restarts 
depends on the available time. 
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Figures 4(1)-(8): Mean number of  evaluations versus mean error of  best 10 solutions. 
Note: 1r denotes algorithm 1 using the restart mechanism.

Thirdly, in this paper we have applied all algorithms 100 times to each optimization 
problem. We have seen that the algorithms do not perform consistently well. On the other 
hand determining the best ten of  the 100 solutions shows that the algorithms also find very 
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good solutions. Therefore it seems profitable to run an algorithm more than once and then 
select the best solutions. Selecting good solutions is not easy though; Boesel et al. [3] present 
an advanced method to select the best solution from all solutions visited during an
optimization run. We feel that running an optimization algorithm 100 times and then
re-evaluating the ten solutions with the lowest estimated response is a good way to find a 
good solution. Since we have an estimated response based on 5 function evaluations for 
every solution, we do not need additional evaluations for determining the best ten. Next, 
the ten best solutions are re-evaluated using more simulation runs than used in the
optimization procedure. The resulting estimated responses are then compared using standard 
techniques. 

Fourthly, in this study the experiments concerned only functions with few parameters. 
For functions with very many parameters either more efficient designs should be used in 
conjunction with RSM or other optimization methods such as stochastic approximation or 
Nelder and Mead should be considered. The latter method appears to perform quite well 
for bigger problem instances, concerning both precision and computing time (see e.g.
Barton and Ivey [2]; Neddermeijer et al. [20]). 

7. Conclusions 

In this paper we worked towards a standardized automated RSM algorithm. The basis 
for this algorithm is the framework of  Neddermeijer et al. [19]. We have extended this by 
introducing explicit decision rules, stopping rules and a restart mechanism. Consequently, 
various settings for such an automated RSM procedure for simulation optimization have 
been compared. We studied the efficiency (precision vs. computing time) of  the different 
algorithms for optimization of  a set of  test problems, including a simulation model for 
cancer screening. Below we summarize our findings. 

� The proposed RSM algorithms are suitable for optimizing objective functions with up 
to eight variables quite precisely in reasonable time. Especially algorithm 3 appears to 
be efficient in this respect. The best ten solutions of  this algorithm are of  high quality; 
the number of  evaluations needed to find these solutions is quite low. 

� The test problems considered in this study have unimodal objective functions, 
meaning that they do not have local optima. Nevertheless it appears that the RSM 
algorithms sometimes get stuck in non-optimal solutions. Generally, this occurs when 
the objective function is very flat in comparison with the associated noise on a certain 
region of  the domain. This problem can be tackled by using the restart mechanism, 
but no global solution is guaranteed. Resetting the region of  interest to its initial size, 
i.e. an enlargement of  this region, and starting the search all over again, gives the 
algorithm the opportunity to escape from regions where the objective function is 
comparatively flat. 

� A number of  refinements has been tested. It appears that some of  the modified RSM 
procedures, e.g. the algorithms using noise reduction and the Myers & Khuri rule, find 
more precise solutions. Unfortunately, using these settings has a drawback: the 
computing time measured as the number of  function evaluations, is higher for these 
algorithms. 

� It appears that rerunning the algorithms can lead to very different results. The 
standard deviations of  the error of  the algorithms are sometimes, even when the 
restart mechanism is applied, of  the same order of  magnitude as the errors themselves. 
That is, the quality of  the solutions found is not consistently high. On the other hand, 
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the restarting procedure gives more confidence in that a good solution is found. Thus, 
running the algorithm with restart ten times, already gives a very high probability of  
finding a good solution. 

� The proposed stopping rules help to recognize when the RSM algorithm makes no 
further progress. In the first phase of  our experiments we noticed that most of  the 
algorithms were terminated somewhat too early, but this is primarily because the 
region of  interest was decreased too early. Combining comparatively strict stopping 
rules with a restart seems to be more efficient than doing one lengthy optimization 
run. This is a topic for further research. 

� No stopping rule seems to outperform the other two. Therefore we recommend to 
implement a combination of  stopping rules like it was done in Section 5.2. As soon as 
there is a sign that there is no improvement being made the algorithm should be 
stopped and possibly restarted. 

� Finally, the traditional RSM algorithms (Fu versions) are terminated too early and 
consequently their solutions are not very accurate. The proposed extended algorithms 
can find better and more stable solutions, but this is at the expense of  additional 
computing time. In the end the practitioner should decide for himself  whether the 
gain in precision is high enough. Our study may contribute to this decision. 
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